1) Find the velocity, acceleration, and speed of a particle with the given position function.
a) $\mathbf{r}(t)=\left\langle t^{2}+1, t^{3}, t^{2}-1\right\rangle$
b) $\mathbf{r}(t)=\left\langle e^{t} \cos t, e^{t} \sin t, e^{t}\right\rangle$
2) Use the given acceleration function to find the velocity and position vectors. Then find the position at time $t=2$.
a) $\mathbf{a}(t)=\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{v}(0)=0, \mathbf{r}(0)=0$
b) $\mathbf{a}(t)=t \mathbf{i}+t^{2} \mathbf{j}+\cos 2 t \mathbf{k}, \quad \mathbf{v}(0)=\mathbf{i}+\mathbf{k}, \quad \mathbf{r}(0)=\mathbf{j}$
3) The position function of a particle is given by: $\mathbf{r}(t)=\left\langle t^{2}, 5 t, t^{2}-16 t\right\rangle$. When is the speed a minimum?
4) What force is required so that a particle of mass m has the position function: $\mathbf{r}(t)=\left\langle t^{3}, t^{2}, t^{3}\right\rangle$?
5) Find the vector function for the path of a projectile launched at a height of 10 feet above the ground with an initial velocity of 88 feet per second and at an angle of 30° above the horizontal.
6) Find the tangential and normal components of the acceleration vector.
a) $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+t \mathbf{k}$
b) $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+3 t \mathbf{k}$
